A Supply Chain Game Theory Framework for Cybersecurity Investments Under Network Vulnerability

Professor Anna Nagurney

Department of Operations and Information Management Isenberg School of Management University of Massachusetts Amherst **Professor Ladimer S. Nagurney** Department of Electrical and Computer Engineering University of Hartford **Shivani Shukla** Department of Operations and Information Management Isenberg School of Management

University of Massachusetts Amherst

POMS Annual Conference, May 6-9, 2016, Orlando, FL

Outline

Introduction

Approach

- The Model 3
- 4 Variational Inequality Formulations
- Qualitative Properties
- 6 The Algorithm
 - Numerical Results
- 8 Summary and Conclusions

-

- ∢ ∃ ▶

Introduction

- **Complex and globalized supply chains** have led to vulnerable IT infrastructure that affects firms and consumers.
- Estimated annual cost to the global economy from cybercrime is more than \$400 billion, conservatively, \$375 billion in losses, more than the national income of most countries (Center for Strategic and International Studies (2014)).

Introduction

- Growing interest in the development of rigorous scientific tools.
- Investments by one decision-maker may affect the decisions of others and the overall supply chain network security (or vulnerability) -Application of Game Theory.
- Holistic approach needed **cyber supply chain risk management** (Boyson (2014)).

イロト 人間ト イヨト イヨト

• A supply chain game theory model developed consisting of **two tiers: the retailers and the consumers**.

イロト イポト イヨト イヨト

• A supply chain game theory model developed consisting of **two tiers: the retailers and the consumers**.

イロト イポト イヨト イヨト

- A supply chain game theory model developed consisting of **two tiers**: **the retailers and the consumers**.
- Retailers seek to maximize their expected profits. **Price is a function** of demand and average network security in the supply chain.

- 4 同 6 4 日 6 4 日 6

- A supply chain game theory model developed consisting of **two tiers: the retailers and the consumers**.
- Retailers seek to maximize their expected profits. **Price is a function** of demand and average network security in the supply chain.
- The probability of a successful attack on a retailer depends not only on its own security level but also on security levels of other retailers.

- 4 同 6 4 日 6 4 日 6

- A supply chain game theory model developed consisting of **two tiers: the retailers and the consumers**.
- Retailers seek to maximize their expected profits. **Price is a function** of demand and average network security in the supply chain.
- The probability of a successful attack on a retailer depends not only on its own security level but also on security levels of other retailers.
- The retailers compete noncooperatively until a Nash equilibrium is achieved, whereby no retailer can improve upon his expected profit by making a unilateral decision in changing his product transactions and security level.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- A supply chain game theory model developed consisting of **two tiers: the retailers and the consumers**.
- Retailers seek to maximize their expected profits. **Price is a function** of demand and average network security in the supply chain.
- The probability of a successful attack on a retailer depends not only on its own security level but also on security levels of other retailers.
- The retailers compete noncooperatively until a Nash equilibrium is achieved, whereby no retailer can improve upon his expected profit by making a unilateral decision in changing his product transactions and security level.
- Retailers: are non-identical, can have distinct investment cost functions, can be spatially separated, brick and mortar/online.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Papers

The presentation is based on:

Nagurney, A., Nagurney, L.S., Shukla, S. (2015). A supply chain game theory framework for cybersecurity investments under network vulnerability. In *Computation, Cryptography, and Network Security*, Daras, Nicholas J., Rassias, Michael Th. (Eds.), Springer, 381-398.

Important References:

Nagurney, A., Nagurney, L. S. (2015). A game theory model of cybersecurity investments with information asymmetry. *Netnomics: Economic Research and Electronic Networking*, 16(1-2), 127-148.

Nagurney, A. (2015). A multiproduct network economic model of cybercrime in financial services. *Service Science*, 7(1), 70-81.

Nagurney, A., Daniele, P., Shukla, S. (2016). A supply chain network game theory model of cybersecurity investments with nonlinear budget constraints, *to appear in Annals of Operations Research*.

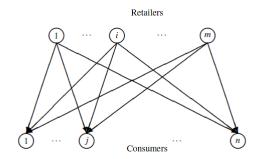


Fig. 1 The network structure of the supply chain game theory model

• *m* spatially separated retailers. Financial transaction through debit/credit cards.

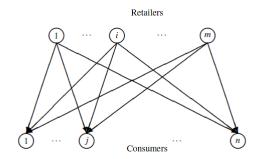


Fig. 1 The network structure of the supply chain game theory model

• *m* spatially separated retailers. Financial transaction through debit/credit cards.

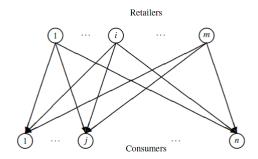


Fig. 1 The network structure of the supply chain game theory model

- *m* spatially separated retailers. Financial transaction through debit/credit cards.
- Cyberattack could cause financial damage, loss of reputation, identity theft, loss of opportunity cost, etc.

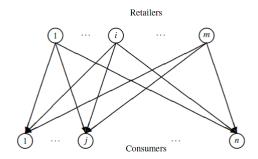


Fig. 1 The network structure of the supply chain game theory model

- *m* spatially separated retailers. Financial transaction through debit/credit cards.
- Cyberattack could cause financial damage, loss of reputation, identity theft, loss of opportunity cost, etc.
- 'Retailers' Pharmaceutical, High Tech, Financial, etc.

- (Isenberg School of Management)

Cybersecurity and Network Vulnerability

May 09, 2016 7 / 33

Network Security, s_i:

$$0 \le s_i \le 1; \quad i = 1, ..., m.$$

Average Network Security of the Chain, \bar{s} :

$$\bar{s}=\frac{1}{m}\sum_{i=1}^m s_i.$$

Probability of a Successful Cyberattack on *i*, *p_i*:

$$p_i = (1 - s_i)(1 - \bar{s}), \quad i = 1, ..., m.$$

Vulnerability, v_i : $v_i = (1 - s_i)$, i = 1, ..., m. Vulnerability of network, $\bar{v} = (1 - \bar{s})$.

Investment Cost Function to Acquire Security s_i , $h_i(s_i)$:

$$h_i(s_i) = \alpha_i(\frac{1}{\sqrt{(1-s_i)}}-1), \ \ \alpha_i > 0, \quad \ i = 1, ..., m.$$

 α_i quantifies size and needs of retailer *i*; $h_i(0) = 0 =$ insecure retailer, and $h_i(1) = \infty =$ complete security at infinite cost. Conservation of Flow:

$$d_j = \sum_{j=1}^n Q_{ij}, \quad j = 1, ..., n,$$

where

$$Q_{ij} \geq 0, \quad \forall i, j.$$

Demand grouped into: $d \in R^n_+$.

May 09, 2016 9 / 33

Demand Price Function for Consumer *j*, ρ_j :

$$\rho_j = \rho_j(d, \bar{s}), \quad j = 1, ..., n.$$

Demand price depends on quantity transacted and *average* network security. Consumers may not know about individual retailer's investments in cybersecurity. **Revenue of Retailer**, i; i = 1, ..., m, in Absence of Cyberattack:

$$\sum_{j=1}^n \hat{
ho}_j(Q,s) Q_{ij}, \quad \hat{
ho}_j(Q,s) \equiv
ho_j(d,ar{s})$$

Cost of Handling and Processing + Transaction:

$$c_i \sum_{j=1}^n Q_{ij} + \sum_{j=1}^n c_{ij}(Q_{ij}), \quad i = 1, ..., m.$$

- (Isenberg School of Management) Cybersecurity and Network Vulnerability May 09, 2016 10 / 33

Profit of Retailer in absence of cyberattack and investments, f_i:

$$f_i(Q,s) = \sum_{j=1}^n \hat{\rho}_j(Q,s)Q_{ij} - c_i \sum_{j=1}^n Q_{ij} - \sum_{j=1}^n c_{ij}(Q_{ij}), \quad i = 1, ..., m.$$

Incurred financial damage: D_i .

Expected Financial Damage after Cyberattack for Retailer i; i = 1, ..., m:

 $D_i p_i, \quad D_i \geq 0.$

Expected Utility/Profit for Retailer i, i = 1, ..., m:

$$E(U_i) = (1 - p_i)f_i(Q, s) + p_i(f_i(Q, s) - D_i) - h_i(s_i).$$

Utilities/Profits grouped into E(U). Let K_i denote the feasible set corresponding to retailer *i*, where $K_i \equiv \{(Q_i, s_i) | Q_i \ge 0, \text{ and } 0 \le s_i \le 1\}$ and define $K \equiv \prod_{i=1}^m K_i$.

Definition 1: A Supply Chain Nash Equilibrium in Product Transactions and Security Levels

$$E(U_i(Q_i^*, s_i^*, \hat{Q}_i^*, \hat{s}_i^*)) \ge E(U_i(Q_i, s_i, \hat{Q}_i^*, \hat{s}_i^*)), \quad \forall (Q_i, s_i) \in K^i,$$

where

 $\hat{Q_i^*} \equiv (Q_1^*, \dots, Q_{i-1}^*, Q_{i+1}^*, \dots, Q_m^*); \quad and \quad \hat{s_i^*} \equiv (s_1^*, \dots, s_{i-1}^*, s_{i+1}^*, \dots, s_m^*).$

An equilibrium is established if no retailer can unilaterally improve upon his expected profits by selecting an alternative vector of product transactions and security levels.

Variational Inequality Formulation

Theorem 1: Variational Inequality Formulation of the Supply Chain Nash Equilibrium in Product Transactions and Security Levels

Assume that, for each retailer i; i = 1, ..., m, the expected profit function $E(U_i(Q, s))$ is concave with respect to the variables $\{Q_{i1}, ..., Q_{in}\}$, and s_i , and is continuous and continuously differentiable. Then $(Q^*, s^*) \in K$ is a supply chain Nash equilibrium according to Definition 1 if and only if it satisfies the variational inequality $\forall (Q, s) \in K$

$$-\sum_{i=1}^{m}\sum_{j=1}^{n}\frac{\partial E(U_{i}(Q^{*},s^{*}))}{\partial Q_{ij}}\times (Q_{ij}-Q^{*}_{ij})-\sum_{i=1}^{m}\frac{\partial E(U_{i}(Q^{*},s^{*}))}{\partial s_{i}}\times (s_{i}-s^{*}_{i})\geq 0.$$

Variational Inequality Formulation

Theorem 1: Variational Inequality Formulation of the Supply Chain Nash Equilibrium in Product Transactions and Security Levels Equivalently, $\forall (Q, s) \in K$,

$$-\sum_{i=1}^{m}\sum_{j=1}^{n}[c_{i}+\frac{\partial c_{ij}(Q_{ij}^{*})}{\partial Q_{ij}}-\hat{\rho}_{j}(Q^{*},s^{*})-\sum_{k=1}^{n}\frac{\partial \hat{\rho}_{k}(Q^{*},s^{*})}{\partial Q_{ij}}\times Q_{ik}^{*}]\times (Q_{ij}-Q_{ij}^{*})$$

$$+\sum_{i=1}^{m}[\frac{\partial h_{i}(s_{i}^{*})}{\partial s_{i}}-(1-\sum_{j=1}^{m}\frac{s_{j}}{m}+\frac{1-s_{i}}{m})D_{i}-\sum_{k=1}^{n}\frac{\partial \hat{\rho}_{k}(Q^{*},s^{*})}{\partial s_{i}}\times Q_{ik}^{*}]\times (s_{i}-s_{i}^{*})\geq 0.$$

- (Isenberg School of Management) Cyl

Cybersecurity and Network Vulnerability

May 09, 2016 14 / 33

Standard Variational Inequality Form

We put the previously discussed Nash equilibrium problem into a standard Variational Inequality form, that is: $X^* \in \mathcal{K} \subset \mathbb{R}^N$, such that,

$$\langle F(X^*), X - X^* \rangle, \quad \forall X \in \mathcal{K},$$

where F is a given continuous function from \mathcal{K} to \mathbb{R}^N and \mathcal{K} is a closed and convex set, and $\mathcal{K} \equiv \mathcal{K}$.

We define the (mn + m)- dimensional vector $X \equiv (Q, s)$ and the (mn + m)dimensional row vector $F(X) = (F^1(X), F^2(X))$ with the (i, j)th component, F_{ij}^1 , of $F^1(X)$ given by,

$$\mathsf{F}^1_{ij}(X) \equiv -rac{\partial E(U_i(Q,s))}{\partial Q_{ij}},$$

the *i*th component, F_i^2 , of $F^2(X)$ given by,

$$F_i^2 \equiv -\frac{\partial E(U_i(Q,s))}{\partial s_i}.$$

Qualitative Properties

Assumption

Suppose that in our supply chain game theory model there exists a sufficiently large M, such that for any (i.j),

$$rac{\partial E(U_i(Q,s))}{\partial Q_{ij}} < 0,$$

for all product transaction patterns Q with $Q_{ij} \ge M$. In other words, it is reasonable to assume that the expected utility of a seller would decrease whenever its product volume has become sufficiently large.

Qualitative Properties

Proposition 1: Existence of Equilibrium

Any supply chain Nash equilibrium problem in product transactions and security levels, as modeled above, that satisfies Assumption 1 possesses at least one equilibrium product transaction and security level pattern. The proof follows from Proposition 1 in Zhang and Nagurney (1995).

Proposition 2: Uniqueness of Equilibrium

Suppose that F is strictly monotone at any equilibrium point of the variational inequality problem. Then it has at most one equilibrium point.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Algorithm

Explicit Formulae for the Euler Method Applied to the Supply Chain Game Theory Model

The elegance of this procedure for the computation of solutions to our model is apparent from the following explicit formulae. In particular, we have the following closed form expression for the product transactions i = 1, ..., m; j = 1, ..., n:

$$Q_{ij}^{\tau+1} = \max\{0, Q_{ij}^{\tau} + a_{\tau}(\hat{\rho}_j(Q^{\tau}, s^{\tau}) + \sum_{k=1}^n \frac{\partial \hat{\rho}_k(Q^{\tau}, s^{\tau})}{\partial Q_{ij}} Q_{ik}^{\tau} - c_i - \frac{\partial c_{ij}(Q_{ij}^{\tau})}{\partial Q_{ij}})\},$$

and the following closed form expression for the security levels i = 1, ..., m:

$$s_i^{\tau+1} =$$

$$\max\{0,\min\{1,s_i^{\tau}+a_{\tau}(\sum_{k=1}^n\frac{\partial\hat{\rho}_k(Q^{\tau},s^{\tau})}{\partial s_i}Q_{ik}^{\tau}-\frac{\partial h_i(s_i^{\tau})}{\partial s_i}+(1-\sum_{j=1}^m\frac{s_j}{m}+\frac{1-s_i}{m})D_i)\}\}.$$

The Algorithm

Theorem 2: Convergence to a Unique Equilibrium under the Euler Method In the supply chain game theory model developed above let $F(X) = \nabla E(U(Q, s))$ be strictly monotone at any equilibrium pattern and assume that Assumption 1 is satisfied. Also, assume that F is uniformly Lipschitz continuous. Then there exists a unique equilibrium product transaction and security level pattern $(Q^*, s^*) \in K$ and any sequence generated by the Euler method, with $\{\alpha_{\tau}\}$ satisfies $\sum_{\tau=0}^{\infty} \alpha_{\tau} = \infty$, $\alpha_{\tau} > 0, \alpha_{\tau} \to 0$, as $\tau \to \infty$ converges to (Q^*, s^*) .

イロト 人間ト イヨト イヨト

The first set of examples follows the following topology:

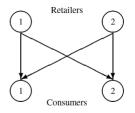


Fig. 2 Network Topology for Example Set 1

The cost functions for Example 1 are:

 $c_1 = 5; c_2 = 10; c_{11}(Q_{11}) = 0.5Q_{11}^2 + Q_{11}; c_{12}(Q_{12}) = 0.25Q_{12}^2 + Q_{12};$ $c_{21}(Q_{21}) = 0.5Q_{21}^2 + 2; c_{22}(Q_{22}) = 0.25Q_{22}^2 + Q_{22}.$ The demand price functions are:

$$\rho_1(d_1,s) = -d_1 + 0.1(\frac{s_1 + s_2}{2}) + 100; \\ \rho_2(d_2,s) = -5d_2 + 0.2(\frac{s_1 + s_2}{2}) + 200.$$

May 09, 2016 20 / 33

The first set of examples follows the following topology:

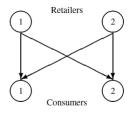


Fig. 2 Network Topology for Example Set 1

The damage parameters are: $D_1 = 50$; $D_2 = 70$ with the investment functions taking the form:

$$h_1(s_1) = rac{1}{\sqrt{(1-s_1)}} - 1; h_2(s_2) = rac{1}{\sqrt{(1-s_2)}} - 1.$$

Hence, in Example 1 the vulnerability of Retailer 1 is .09 and that of Retailer 2 is also .09, with the network vulnerability being .09.

May 09, 2016 21 / 33

In **Variant 1.1**, we change the demand price function of Consumer 1 to reflect an enhanced willingness to pay more for the product.

$$\rho_1(d_1,s) = -d_1 + 0.1(\frac{s_1 + s_2}{2}) + 200.$$

Solution	Ex. 1	Var. 1.1	Var. 1.2	Var. 1.3	Var. 1.4
Q_{11}^*	24.27	49.27	49.27	24.27	24.26
Q ₁₂ *	98.30	98.30	8.30	98.32	98.30
Q_{21}^{*}	21.27	46.27	46.27	21.27	21.26
Q_{22}^{*}	93.36	93.36	3.38	93.32	93.30
d_1^*	45.55	95.55	95.55	45.53	45.52
d2*	191.66	191.66	11.68	191.64	191.59
51	.91	.91	.88	.66	.73
s ₂ *	.91	.92	.89	.72	.18
5*	.91	.915	.885	.69	.46
$\rho_1(d_1^*, \bar{s}^*)$	54.55	104.55	104.54	54.54	54.52
$\rho_2(d_2^*, \bar{s}^*)$	104.35	104.35	14.34	104.32	104.30
$E(U_1)$	8136.45	10894.49	3693.56	8121.93	8103.09
$E(U_2)$	7215.10	9748.17	3219.94	7194.13	6991.11

The vulnerability of Retailer 2 decreased slightly to 0.08.

- (Isenberg School of Management)

3

In **Variant 1.2**, Consumer 2 no longer values the product much. So, his demand price function is

$$\rho_2(d_2,s) = -0.5d_2 + 0.2(\frac{s_1 + s_2}{2}) + 20.$$

Solution	Ex. 1	Var. 1.1	Var. 1.2	Var. 1.3	Var. 1.4
Q ₁₁ *	24.27	49.27	49.27	24.27	24.26
Q_{12}^{*}	98.30	98.30	8.30	98.32	98.30
Q ₂₁ *	21.27	46.27	46.27	21.27	21.26
Q_{22}^{*}	93.36	93.36	3.38	93.32	93.30
d_1^*	45.55	95.55	95.55	45.53	45.52
d2*	191.66	191.66	11.68	191.64	191.59
s1*	.91	.91	.88	.66	.73
<i>s</i> ₂ *	.91	.92	.89	.72	.18
<u></u> -	.91	.915	.885	.69	.46
$\rho_1(d_1^*, \bar{s}^*)$	54.55	104.55	104.54	54.54	54.52
$\rho_2(d_2^*, \bar{s}^*)$	104.35	104.35	14.34	104.32	104.30
$E(U_1)$	8136.45	10894.49	3693.56	8121.93	8103.09
$E(U_2)$	7215.10	9748.17	3219.94	7194.13	6991.11

The vulnerability of Retailer 1 is now .12 and that of Retailer 2: .11 with the network vulnerability being: .115.

- (Isenberg School of Management)

Cybersecurity and Network Vulnerability

May 09, 2016 23 / 33

In **Variant 1.3**, both security investment cost functions are increased so that:

$$h_1(s_1) = 100(\frac{1}{\sqrt{1-s_1}}-1); h_2(s_2) = 100(\frac{1}{\sqrt{1-s_2}}-1),$$

and having new damages: $D_1 = 500$; $D_2 = 700$.

Solution	Ex. 1	Var. 1.1	Var. 1.2	Var. 1.3	Var. 1.4
Q_{11}^*	24.27	49.27	49.27	24.27	24.26
Q ₁₂ *	98.30	98.30	8.30	98.32	98.30
Q ₂₁	21.27	46.27	46.27	21.27	21.26
Q ₂₂ *	93.36	93.36	3.38	93.32	93.30
d_1^*	45.55	95.55	95.55	45.53	45.52
d2*	191.66	191.66	11.68	191.64	191.59
s1*	.91	.91	.88	.66	.73
<u>s</u> * 5*	.91	.92	.89	.72	.18
<u></u> 5*	.91	.915	.885	.69	.46
$\rho_1(d_1^*, \bar{s}^*)$	54.55	104.55	104.54	54.54	54.52
$\rho_2(d_2^*, \bar{s}^*)$	104.35	104.35	14.34	104.32	104.30
$E(U_1)$	8136.45	10894.49	3693.56	8121.93	8103.09
$E(U_2)$	7215.10	9748.17	3219.94	7194.13	6991.11

The vulnerability of Retailer 1 is now .34 and that of Retailer 2: .28 with the network vulnerability =.31.

- (Isenberg School of Management)

Cybersecurity and Network Vulnerability

May 09, 2016 24 / 33

In **Variant 1.4**, Retailer 2's investment cost function is increased further so that:

$$h_2(s_2) = 1000(\frac{1}{\sqrt{1-s_2}}-1),$$

Solution	Ex. 1	Var. 1.1	Var. 1.2	Var. 1.3	Var. 1.4
Q_{11}^*	24.27	49.27	49.27	24.27	24.26
Q ₁₂ *	98.30	98.30	8.30	98.32	98.30
Q_{21}^{*}	21.27	46.27	46.27	21.27	21.26
Q_{22}^{*}	93.36	93.36	3.38	93.32	93.30
d_1^*	45.55	95.55	95.55	45.53	45.52
d2*	191.66	191.66	11.68	191.64	191.59
s_1^*	.91	.91	.88	.66	.73
<i>s</i> ₂ *	.91	.92	.89	.72	.18
5	.91	.915	.885	.69	.46
$\rho_1(d_1^*, \bar{s}^*)$	54.55	104.55	104.54	54.54	54.52
$\rho_2(d_2^*, \bar{s}^*)$	104.35	104.35	14.34	104.32	104.30
$E(U_1)$	8136.45	10894.49	3693.56	8121.93	8103.09
E(U ₂)	7215.10	9748.17	3219.94	7194.13	6991.11

The vulnerability of Retailer 1 is now: .27 and that of Retailer 2: .82. The network vulnerability for this example is: .54, the highest value in this set of examples

- (Isenberg School of Management)

The second set of examples follows the following topology:

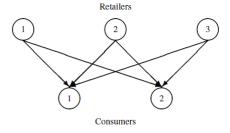


Fig. 3 Network Topology for Example Set 2

The cost functions for Example 2 are the same for Retailers 1 and 2. However, for the added Retailer 3:

$$c_{3} = 3; c_{31}(Q_{31}) = Q_{31}^{2} + 3Q_{31}; c_{32}(Q_{32}) = Q_{32}^{2} + 4Q_{32};$$

$$h_{3}(s_{3}) = 3(\frac{1}{\sqrt{(1-s_{3})}} - 1); D_{3} = 80.$$
hool of Management)
Cybersecurity and Network Vulnerability
May 09, 2016
26 / 33

(Isenberg School of Management)

Cybersecurity and Network Vulnerability

In **Variant 2.1**, we change the demand price function of Consumer 1 to reflect more sensitivity to network security.

$$\rho_1(d_1,s) = -d_1 + (\frac{s_1 + s_2}{2}) + 100.$$

Solution	Ex. 2	Var. 2.1	Var. 2.2	Var. 2.3	Var. 2.4
Q ₁₁	20.80	20.98	20.98	11.64	12.67
Q_{12}^{*}	89.45	89.45	89.82	49.62	51.84
Q_{21}^{*}	17.81	17.98	17.98	9.64	10.67
Q_{22}^{*}	84.49	84.49	84.83	46.31	48.51
Q_{31}^{*}	13.87	13.98	13.98	8.73	9.50
Q_{32}^{*}	35.41	35.41	35.53	24.50	25.59
d ₁ *	52.48	52.94	52.95	30.00	32.85
d2*	209.35	209.35	210.18	120.43	125.94
s_1^*	.90	.92	.95	.93	.98
s ₂ *	.91	.92	.95	.93	.98
<u>s</u> 5*	.81	.83	.86	.84	.95
<u></u> 	.87	.89	.917	.90	.97
$\rho_1(d_1^*, \bar{s}^*)$	47.61	47.95	47.96	40.91	44.01
$\rho_2(d_2^*, \bar{s}^*)$	95.50	95.50	95.83	80.47	83.77
$E(U_1)$	6654.73	6665.88	6712.29	3418.66	3761.75
$E(U_2)$	5830.06	5839.65	5882.27	2913.31	3226.90
$E(U_3)$	2264.39	2271.25	2285.93	1428.65	1582.62

Vulnerabilities of all firms have decreased.

- (Isenberg School of Management)

(3)

In **Variant 2.2**, Consumer 2 is also more sensitive to average security with a new demand price function given by:

$$\rho_2(d_2, s) = -0.5d_2 + (\frac{s_1 + s_2}{2}) + 200.$$

Solution	Ex. 2	Var. 2.1	Var. 2.2	Var. 2.3	Var. 2.4
Q_{11}^{*}	20.80	20.98	20.98	11.64	12.67
Q_{12}^{*}	89.45	89.45	89.82	49.62	51.84
Q_{21}^{*}	17.81	17.98	17.98	9.64	10.67
Q_{22}^{*}	84.49	84.49	84.83	46.31	48.51
Q_{31}^{*}	13.87	13.98	13.98	8.73	9.50
Q ₃₂	35.41	35.41	35.53	24.50	25.59
d_1^*	52.48	52.94	52.95	30.00	32.85
d2*	209.35	209.35	210.18	120.43	125.94
s1*	.90	.92	.95	.93	.98
<u>s</u> *	.91	.92	.95	.93	.98
53	.81	.83	.86	.84	.95
<u></u> 	.87	.89	.917	.90	.97
$\rho_1(d_1^*, \bar{s}^*)$	47.61	47.95	47.96	40.91	44.01
$\rho_2(d_2^*, \bar{s}^*)$	95.50	95.50	95.83	80.47	83.77
$E(\overline{U}_1)$	6654.73	6665.88	6712.29	3418.66	3761.75
$E(U_2)$	5830.06	5839.65	5882.27	2913.31	3226.90
E(U ₃)	2264.39	2271.25	2285.93	1428.65	1582.62

The vulnerability of Retailer 1,2 = .05, Retailer 3 = .14. The network vulnerability is .08, \sim

In Variant 2.3, we change the demand price functions:

$$\rho_1(d_1,s) = -2d_1 + (\frac{s_1 + s_2}{2}) + 100; \\ \rho_2(d_2,s) = -d_2 + (\frac{s_1 + s_2}{2}) + 100.$$

Solution	Ex. 2	Var. 2.1	Var. 2.2	Var. 2.3	Var. 2.4
Q_{11}^{*}	20.80	20.98	20.98	11.64	12.67
Q_{12}^{*}	89.45	89.45	89.82	49.62	51.84
Q_{21}^{*}	17.81	17.98	17.98	9.64	10.67
Q_{22}^{*}	84.49	84.49	84.83	46.31	48.51
Q_{31}^*	13.87	13.98	13.98	8.73	9.50
Q_{32}^{*}	35.41	35.41	35.53	24.50	25.59
d_1^*	52.48	52.94	52.95	30.00	32.85
d_2^*	209.35	209.35	210.18	120.43	125.94
s1*	.90	.92	.95	.93	.98
s ₂ *	.91	.92	.95	.93	.98
<u>s</u> * <u>5</u> *	.81	.83	.86	.84	.95
<u></u> 5*	.87	.89	.917	.90	.97
$\rho_1(d_1^*, \bar{s}^*)$	47.61	47.95	47.96	40.91	44.01
$\rho_2(d_2^*, \bar{s}^*)$	95.50	95.50	95.83	80.47	83.77
$E(\overline{U}_1)$	6654.73	6665.88	6712.29	3418.66	3761.75
$E(U_2)$	5830.06	5839.65	5882.27	2913.31	3226.90
$E(U_3)$	2264.39	2271.25	2285.93	1428.65	1582.62

The vulnerabilities of the Retailers 1,2 and 3 are: .07, 07, and .16 with the network vulnerability at .10.

- (Isenberg School of Management)

In Variant 2.4, we change the demand price functions:

$$\rho_1(d_1,s) = -2d_1 + 10(\frac{s_1 + s_2}{2}) + 100; \\ \rho_2(d_2,s) = -d_2 + 10(\frac{s_1 + s_2}{2}) + 100.$$

Solution	Ex. 2	Var. 2.1	Var. 2.2	Var. 2.3	Var. 2.4
Q_{11}^*	20.80	20.98	20.98	11.64	12.67
Q_{12}^*	89.45	89.45	89.82	49.62	51.84
Q_{21}^{*}	17.81	17.98	17.98	9.64	10.67
Q ₂₂	84.49	84.49	84.83	46.31	48.51
Q_{31}^{*}	13.87	13.98	13.98	8.73	9.50
Q ₃₂	35.41	35.41	35.53	24.50	25.59
d_1^*	52.48	52.94	52.95	30.00	32.85
d2*	209.35	209.35	210.18	120.43	125.94
s1*	.90	.92	.95	.93	.98
<i>s</i> ₂ *	.91	.92	.95	.93	.98
<i>s</i> ₃ *	.81	.83	.86	.84	.95
<u></u> 5*	.87	.89	.917	.90	.97
$\rho_1(d_1^*, \bar{s}^*)$	47.61	47.95	47.96	40.91	44.01
$\rho_2(d_2^*, \bar{s}^*)$	95.50	95.50	95.83	80.47	83.77
$E(\overline{U}_1)$	6654.73	6665.88	6712.29	3418.66	3761.75
$E(U_2)$	5830.06	5839.65	5882.27	2913.31	3226.90
E(U ₃)	2264.39	2271.25	2285.93	1428.65	1582.62

Vulnerabilities of Retailers 1,2 and 3: .02, .02, and .05. Network vulnerability = .03. This is the least vulnerable supply chain network.

- (Isenberg School of Management)

Cybersecurity and Network Vulnerability

May 09, 2016 30 / 33

• With companies seeking to determine how much they should invest in cybersecurity, a general framework that can quantify the investments in cybersecurity in supply chain networks is needed.

A 12 N A 12 N

- With companies seeking to determine how much they should invest in cybersecurity, a general framework that can quantify the investments in cybersecurity in supply chain networks is needed.
- We derived the **variational inequality formulation** of the governing equilibrium conditions, discussed **qualitative properties**, and demonstrated that the **algorithm** is computationally effective.

< 回 ト < 三 ト < 三 ト

- With companies seeking to determine how much they should invest in cybersecurity, a general framework that can quantify the investments in cybersecurity in supply chain networks is needed.
- We derived the **variational inequality formulation** of the governing equilibrium conditions, discussed **qualitative properties**, and demonstrated that the **algorithm** is computationally effective.
- The numerical results illustrated the impacts of an *increase in* competition, changes in the demand price functions, changes in the damages incurred, and changes in the cybersecurity investment cost functions.

イロト 不得下 イヨト イヨト

- With companies seeking to determine how much they should invest in cybersecurity, a general framework that can quantify the investments in cybersecurity in supply chain networks is needed.
- We derived the **variational inequality formulation** of the governing equilibrium conditions, discussed **qualitative properties**, and demonstrated that the **algorithm** is computationally effective.
- The numerical results illustrated the impacts of an *increase in* competition, changes in the demand price functions, changes in the damages incurred, and changes in the cybersecurity investment cost functions.
- We also provide the vulnerability of each retailer and the **network** vulnerability.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- With companies seeking to determine how much they should invest in cybersecurity, a general framework that can quantify the investments in cybersecurity in supply chain networks is needed.
- We derived the variational inequality formulation of the governing equilibrium conditions, discussed **qualitative properties**, and demonstrated that the **algorithm** is computationally effective.
- The numerical results illustrated the impacts of an *increase in* competition, changes in the demand price functions, changes in the damages incurred, and changes in the cybersecurity investment cost functions.
- We also provide the vulnerability of each retailer and the **network** vulnerability.
- The approach of applying game theory and variational inequality theory with expected utilities to cybersecurity is unique.

→ < ∃ →</p>

Acknowledgements

• This research of the first author was supported by the National Science Foundation (NSF) grant CISE #1111276, for the NeTS: Large: Collaborative Research: Network Innovation Through Choice project awarded to the University of Massachusetts Amherst as well as by the Advanced Cyber Security Center through the grant: Cybersecurity Risk Analysis for Enterprise Security. This support is gratefully acknowledged.

イロト 不得下 イヨト イヨト

Thank You!

For more information, please visit: http://supernet.isenberg.umass.edu/default.htm.

<ロ> (日) (日) (日) (日) (日)